Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Features

Automatic object classification and image processing in autonomous driving

Rachel EvansBy Rachel EvansFebruary 17, 20205 Mins Read
Share LinkedIn Twitter Facebook Email

Advanced artificial intelligence (AI) and convolutional neural network (CNN) technology has made automatic detection of a range of objects possible. However, it will never be possible to fully eliminate erroneous classifications – one reason the reliability of automatic image processing must continue to improve.

Correct classification of objects is a matter of life or death in autonomous driving, and this requires a deeper understanding of decision-making processes within the neural networks. Gaining a better grasp of these mechanisms is the only way to reduce misclassification to a minimum and comply with the ISO 26262 and ISO/PAS 21448 safety standards for the reduction of, for example, unknown or unsafe scenarios.

That’s why, as part of its research activities, Arrk Engineering has developed the foundations of a framework for better understanding how CNNs work, and ultimately improving their object classification capabilities. This framework makes it easy to identify and eliminate vulnerabilities in a CNN, thus minimizing the risk of errors and accidents caused by incorrect classifications.

“For autonomous driving it is key that the algorithms for object recognition work fast and yield a minimal error rate, but it will only be possible to develop optimal safety features for autonomous driving once we have understood neural networks down to the last detail. The ISO 26262 and ISO/PAS 21448 standards provide the general framework for this, and it will be especially important to ensure the development processes and evaluation metrics are uniform,” explained Václav Diviš, senior engineer for ADAS and autonomous driving at Arrk Engineering.

To achieve this goal, Arrk Engineering has established an evaluation framework for machine learning in the form of software as part of its research activities. This software will enable deeper insight into the recognition process of neural networks. From there, it will be possible to optimize algorithms and improve automatic object recognition. The experiment also served to gain a better understanding of how neural networks work.

Training the neural network

The first step was to select a reliable generative adversarial network (GAN) architecture, consisting of two neural networks – one generator and one discriminator – to provide a basis for the framework and to augment the dataset. In this phase, the used dataset comprised more than 1,000 photos of pedestrians.

“Additional images were generated using the GAN to extend the dataset. The GAN’s generator synthesized an image and the discriminator assessed the quality of this image. The interaction between these two neural networks enables us to extract the features from the original objects, generate a new image, and extend the original dataset relatively easily.”

Then the classification network was trained on the original dataset and the test results were evaluated. To achieve the best possible results, Arrk used state-of-the-art architectures for all elements in the experiment.

“The generalization of the object represents a challenge in image processing. The basic question is: “What defines pedestrian?” This can be easily answered by humans, since we generalize inductively. Neural networks, on the other hand, work deductively and require numerous examples to identify a specific object,” explained Diviš.

Furthermore, it is important to observe ‘corner cases’ – special cases in which pedestrians are not recognized due to a pedestrian’s unusual posture, an obtrusion blocking a sensor’s view, or poor lighting due to weather conditions. Datasets typically lack suitable image material to classify these exceptional cases, but thanks to the GAN structure that has been established, Arrk has managed to supplement the dataset with computer-generated images and thus mitigate this problem.

Optimization of object classification processes

Arrk then began with comprehensive tests to gain a deeper understanding of the processes that underlie CNN training, focusing particularly on the filtering of object attributes as well as the depiction of regions of interest (ROI) in the image area being examined. The emergence of these kernel weights and the resulting ROI are essential for finding evaluation metrics and thus automated object classification. In their analyses, experts looked at a number of processes that occur in neural networks and examined approaches to understand the neurons’ flow of information.

“Some neurons are more associated with the identification of pedestrians and produce stronger responses than others. That’s why we’ve tested a range of scenarios in which we deactivated certain neurons to see how they influence decision-making processes. We could confirm that not every neuron responsible for identifying pedestrians needs to be activated, and in fact not removing some neurons can even lead to quicker and better results.”

The framework that was created can be used to analyze these types of changes.

This enables the stability of algorithms to be sustainably increased, which will serve to make autonomous driving safer. Precautions could be taken, for example, to reduce the risk of an ‘adversary attack’ – the external deployment of a malicious code disguised as a neutral image to compromise the neural network. This code generates a disturbance and influences the decisions of certain neurons, making it impossible to correctly recognize objects. The effects of these types of external disruptions could be reduced by removing inactive neurons, as this would provide fewer targets to attack in the neural network.

Diviš said, “We will never be able to guarantee correct object classification 100% of the time. Our job is to identify and better understand vulnerabilities in neural networks. Only by doing so can we take efficient counteractive measures and ensure maximum safety.”

A system’s object classification capabilities can also be improved immensely through the evaluation and combination of various data collected by sensors such as cameras, lidar and radar.

Share. Twitter LinkedIn Facebook Email
Previous ArticleUp to date with the latest R&D projects?
Next Article Learn about Volkswagen’s advanced technologies team
Rachel Evans

Rachel's career in journalism has seen her write for various titles at UKi Media & Events within automotive, tire and marine. Currently editor of ATTI, her favourite aspect of the job is interviewing industry experts, including researchers, scientists, engineers and technicians, and learning more about the groundbreaking technologies and innovations that are shaping the future of transportation.

Related Posts

Features

Porsche embraces AI for innovative data analysis in vehicle development

June 12, 20253 Mins Read
Features

INTERVIEW: Matt Wilson, team principal, Ford M-Sport

June 10, 20257 Mins Read
ADAS & CAVs

VI-grade’s ZPS signals evolution in vehicle development

May 30, 20254 Mins Read
Latest News

Rohde & Schwarz unveils FSWX signal analyzer with innovative multi-path architecture

June 16, 2025

GM’s Pramod Kumar named president of Open Alliance

June 16, 2025

MB Dynamics develops lightweight shaker for testing on the move

June 16, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT