Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Features

Simulating ‘realistic wind’

John ThorntonBy John ThorntonJanuary 10, 20173 Mins Read
Share LinkedIn Twitter Facebook Email

Exa Corporation explains how transient flow simulations can enable more realistic reproduction of real-world conditions for accurate assessment of fuel economy

For a typical car driving at highway speeds, about 50% of the energy is spent overcoming aerodynamic drag and the other 50% is required to overcome the mechanical losses (engine, transmission, tires, ancillary systems, etc.). This means that every 2% in aerodynamic drag reduction translates to a 1% improvement in fuel economy.

As engines, transmissions and low rolling resistance tires become more efficient, especially in the case of electric vehicles, the reduction of vehicle aerodynamic drag under real world conditions on the road has increased impact on the fuel economy and driving range.

In the recent SAE paper (SAE 2015-01-1551), experimental on road measurements were gathered by comparing the energy consumption of the vehicle with the characteristics of the on road flow field, including traffic turbulence and crosswind, as measured by a pitot-static probe mounted on the roof of the vehicle. The fluctuations in the measured wind are attributed mainly to turbulence caused by other vehicles on the road, while the measured yaw angle is attributed mainly to the prevailing crosswind and large-scale wind gusts.

Figure 1: Power consumption increases with yaw and turbulence intensity in experimental tests

Figure 1 shows the power consumption as a function of yaw angle. The data has been segmented by turbulence intensity, showing the influence of turbulence in addition to yaw angle as a source of drag. Lower turbulence intensities yielded a lower drag value. Conversely, data with high turbulence intensity levels indicated that added turbulence generally decreases yaw sensitivity to drag, but increases overall drag value.

The numerical simulations were carried out using Exa’s PowerFLOW. The realistic flow environment was modeled by including all the relevant traffic turbulence and wind structures that together make up the real on road environment, including flow structures many times the size of the vehicle.

These flow structures, specified at the inlet, evolved in time as they were transported downstream toward the vehicle. On top of these realistic wind fluctuations, a varying crosswind yaw angle was also added. The interaction between yaw angle, turbulence, and the vehicle flow field is illustrated in Figure 2 (below), where streamlines are colored by local yaw angle as they move through the domain. The realistic wind effects resulted in a drag increase of about ?CD=+0.010, but also a slightly less steep yaw curve, indicating that the effect of realistic wind is more significant near zero yaw than at higher yaw angles.

Figure 2: Numerical simulation with realistic wind and dynamic yaw. Streamlines colored by yaw angle

Both the experimental and numerical data indicate a direct trend between environmental turbulence intensity and power consumption of the vehicle. Basically, this means that the real world conditions, including traffic turbulence and crosswind, will result in a reduction of the fuel economy of the vehicle. Therefore, improving the efficiency and performance of any vehicle on the open road requires that the main features of the real world conditions be included in the simulated environment.

January 10, 2017

Share. Twitter LinkedIn Facebook Email
Previous ArticleTough competition
Next Article Benchtop electrical analyzer
John Thornton

John joined UKi Media & Events in 2012 and has worked across a range of B2B titles within the company's automotive, marine and entertainment divisions. Currently editor of Automotive Testing Technology International, Crash Test Technology International and Electric & Hybrid Marine Technology International, John co-ordinates the day-the-day operations of each magazine, from commissioning and writing to editing and signing-off, as well managing web content. Aside from the magazines, John also serves as co-chairman of the annual Electric & Hybrid Marine Awards and can be found sniffing out stories throughout the halls of several of UKI's industry-leading expo events.

Related Posts

Features

Porsche embraces AI for innovative data analysis in vehicle development

June 12, 20253 Mins Read
Features

INTERVIEW: Matt Wilson, team principal, Ford M-Sport

June 10, 20257 Mins Read
ADAS & CAVs

VI-grade’s ZPS signals evolution in vehicle development

May 30, 20254 Mins Read
Latest News

Xi’an ActionPower Electric Co develops new EV test equipment

June 18, 2025

New partnerships expand eMpulse’s footprint in Türkiye and into South Africa

June 17, 2025

Rohde & Schwarz unveils FSWX signal analyzer with innovative multi-path architecture

June 16, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT