Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Features

Case study: Ford and Vibration Research

John ThorntonBy John ThorntonDecember 2, 20157 Mins Read
Share LinkedIn Twitter Facebook Email

When Ford Motor Company experienced a part failure in its testing lab and needed to confidently ensure the same situation wouldn’t happen in the real world, it turned to Vibration Research Corporation for help

Lab technicians at a Ford Motor Company testing facility were facing a serious dilemma they couldn’t seem to solve: a fuel-rail on their 5.0-liter and 6.2-liter BOSS engines experienced several lab testing failures on the dynamometer that had never been observed in the field. These failures naturally created some concern. Was the company simply over-testing the fuel-rail or was it accurately predicting a real life future and a potentially dangerous situation?

Ford was concerned about repeated lab failures even though the product seemingly operated problem-free in the field. The company’s technicians knew this was a puzzle that needed to be solved – properly analyzing failures could be the difference between a costly recall or no recall.

One of two things was flawed: either the fuel-rail or the test. In order to restore confidence in the fuel-rail and gain peace of mind, the Ford technicians needed to analyze their test to see if the issue was over-testing or a faulty fuel-rail. Accordingly, Ford contacted Vibration Research Corporation to see what resources and/or advice were available to help tackle this tough challenge.

The Vibration Research team studied the situation and ultimately recommended the Fatigue Damage Spectrum (FDS) vibration testing module, which is used specifically for testing a product for its expected/desired lifetime using the concepts of fatigue damage.

S-N Curve: the solution – Part I

In order to determine whether Ford’s vibration tests were actually over-testing the fuel-rail, Vibration Research engineers first analyzed the test data. After reviewing all of the data compiled from various parts of the engine, the engineers decided to concentrate specifically on the engine head. This area provided the largest Grms values in response to the test and appeared to be putting the energy into the “crossover” component of the fuel-rail system.

However, the data from Ford had a broad range spectrum of 10-3200Hz, and using the fatigue damage import function required an 18.9 Grms test – too large for the available shaker.

So, the team band-limited the data to 243-423Hz. This range produced the crossover’s most damaging resonances in response to the test – 37 Grms, while only requiring a control of 2.2 Grms. Focusing on this range, the team proceeded.

The team observed the time and level in which the failure occurred and used the fuel-rail system test data to develop an S-N curve. This curve shows product failures in a plot of stress levels versus time to failure at those respective stress levels, and facilitates extrapolation and prediction. The S-N curve showed that the lab tests were significantly over-testing the fuel-rail system.

After extrapolating the S-N curve to the 2.1 Grms range, it became apparent that if the fuel-rail system vibrated at 2.1 Grms for the 243-423Hz range (which was Ford’s minimum Grms standard for survival of the fuel-rail system), some 10,000 hours of testing would be required before failure.

But the Ford lab technicians were observing failures in the lab during the 240-hour durability standard test which ran at the 2.1 Grms level. Something was amiss, and the puzzle wasn’t quite solved. The question became, what test would more realistically and efficiently determine the product’s longevity?

FDS: the solution – Part II

The dynamometer that was used by Ford to test the fuel-rail system significantly over-tested the product. And it tested the fuel-rail system in a completely different kind of environment to that which it would experience in the real world. In their search for a better test than the one that over-tested the product, the technicians wondered whether to run a series of sine tests at various known resonances or whether to run a random test across a known frequency range.

Due to the significant resonances at a number of key locations on the fuel-rail, the technicians considered the possibility of testing with a series of sine tones with large amplitudes at the key resonant frequencies that had been observed in the engine and fuel-rail system.

The problem with this proposed solution was that the engineer was saddled with several sticky questions, including deciding which sine tones should be used and with what amplitudes. In addition, the possibility of the resonances on the fuel-rail shifting and changing when mounted to the engine would make it difficult to test the true resonances of the fuel-rail system. In light of these concerns, the sine test option became less favorable and was not used.

Enter Vibration Research’s Fatigue Damage Spectrum (FDS), a test module now offered under the company’s VibrationVIEW software that tests products by applying the amount of damage that they would experience during their lifetimes.

The team already had a waveform containing the engine head vibration patterns which caused significant resonances in the fuel-rail. Furthermore, the team had already developed an S-N curve, which afforded an approximation of the m value (the critical parameter in fatigue damage). With these two items, they only needed to import the band-limited waveform, set the target life to Ford’s expected/desired lifetime for the fuel-rail, and then enter their desired test duration.

Ford’s imported waveform had a Grms value of 2.2 rms, which was similar to its durability standard for the fuel-rail system (one only has to import a waveform that represents the product’s expected environment—with an accurate m value—in order to utilize fatigue damage). The target life and test duration were set to 120 hours.

In importing a waveform that accurately represents a product’s expected vibration environment—using the Fatigue Damage method and an accurate m based on the S-N curve—and then setting the target life value to the product’s expected/desired lifetime, VibrationVIEW carries out several functions, including: calculating the damage present in the imported waveform, determining how many imported waveforms “fit” in the target lifespan, increasing the damage amount by the same factor, and calculating the PSD that corresponds with the final damage amount. Hence, the resultant test applies a product’s life-dose of damage.

With respect to the fuel-rail system, the resultant test gave the fuel-rails a life-dose of fatigue damage that they would experience in the field. This meant if the fuel-rails survived the lab test, they could be expected to survive in the field. In addition, with an accurate m value, the engineers could shorten the test duration while keeping target life the same. The FDS test would apply the same amount of damage but in a shorter amount of time without over-testing the product.

The engineers could also utilize Vibration Research’s Kurtosion Time Compression – bringing the damaging, lifelike peaks back into the test – which would decrease the Grms of the accelerated test without changing fatigue damage. Less Grms, same damage.

The S-N curve for the fuel-rail—built from data and then extrapolated—indicated that the fatigue life of the fuel-rail was around 10,000 hours for a vibration test at 2.1 Grms. Ford utilized a standard that required the fuel-rail system to survive a disastrous waveform test for a minimum of 120 hours, based on the kind of environments that the engine was expected to encounter in real life. Ford also utilized a durability standard that required a product to survive 240 hours of similar testing. This is 10,000 hours compared to 240 hours, a life expectancy more than 40 times longer. The Ford laboratory tests were significantly over-testing the fuel-rail systems.

Vibration Research’s FDS facilitated the design of a new test for the fuel-rail, one that would apply a realistic life-dose of fatigue to the system. The resultant test gave engineers a realistic, 120-hour test that applied a life-dose of damage. They didn’t stop there.

They accelerated the test by reasonably reducing the test duration, which increased the Grms of the PSD while maintaining the same amount of damage. At the same time, the engineers utilized Kurtosion Time Compression, which decreased the Grms without changing the fatigue damage level.

Below from top:

Fuel-rail system;

Fuel-rail system leak after test;

Fuel-rail system leak;

Grms values for components of fuel-rail system at frequency range 243-423Hz;

S-N curve for fuel-rail system – actual data

November 26, 2015

Share. Twitter LinkedIn Facebook Email
Previous ArticleZF develops airbag for better side impact protection
Next Article UK and India enter into MoU to collaborate on vehicle R&D
John Thornton

John joined UKi Media & Events in 2012 and has worked across a range of B2B titles within the company's automotive, marine and entertainment divisions. Currently editor of Automotive Testing Technology International, Crash Test Technology International and Electric & Hybrid Marine Technology International, John co-ordinates the day-the-day operations of each magazine, from commissioning and writing to editing and signing-off, as well managing web content. Aside from the magazines, John also serves as co-chairman of the annual Electric & Hybrid Marine Awards and can be found sniffing out stories throughout the halls of several of UKI's industry-leading expo events.

Related Posts

Features

ASAM shares updates on its positioning for SDV, AI and open-source at Technical Seminar

April 14, 20259 Mins Read
Features

Simplifying C++ tuples for safer automotive systems

March 18, 20255 Mins Read
Active Safety

Latency performance testing of the LTE-V2X PC5 interface

March 5, 20256 Mins Read
Latest News

NewtonWorks launches simulation software tools for component testing

April 30, 2025

ATTI Awards Forum 2025: Program announced

April 30, 2025

NEW WEBINAR: Automated image-based measurements in automotive testing applications

April 30, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT