Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Active Safety

Raising the bar on autonomous vehicle safety

Thomas Goetzl, vice president of automotive and energy solutions, Keysight TechnologiesBy Thomas Goetzl, vice president of automotive and energy solutions, Keysight TechnologiesApril 29, 20224 Mins Read
Share LinkedIn Twitter Facebook Email
Thomas Goetzl, vice president of automotive and energy solutions, Keysight Technologies

The fully autonomous vehicles of the not-so-distant future promise tremendous gains in automotive safety and transportation efficiency. But to fulfil this promise, automotive OEMs must move beyond contemporary levels of vehicle autonomy. Making that leap will require overcoming a unique set of challenges for testing automotive radar sensors in advanced driver assistance systems and autonomous driving systems, as well as developing new methodologies for training algorithms that conventional solutions are ill-equipped to address.

SAE International defines six levels of vehicle autonomy, with Level 0 representing fully manual and Level 5 representing fully autonomous.

Today’s most advanced autonomous vehicle systems rate only Level 3, which means they are capable of making some decisions such as acceleration or braking without human intervention. Getting from Level 3 to Level 5 will require many breakthroughs, including closing the gap between software simulation and roadway testing, and training ADAS and autonomous driving algorithms to real-world conditions.

Keysight’s latest innovation, the Radar Scene Emulator (RSE), goes a long way toward bridging these gaps.

Software simulation plays an important role in autonomous vehicle development. Simulating environments through software can help validate the capabilities of ADAS and autonomous driving systems. But simulation cannot fully replicate real-world driving conditions or the potential for imperfect sensor response – something that fully autonomous vehicles will inevitably have to contend with.

OEMs rely on road testing to validate ADAS and autonomous driving systems prior to bringing them to market. While road testing is and will continue to be a vital and necessary component of the development process, it is time-consuming, costly and difficult to repeat specifically in the area of controlling environmental conditions. Relying on road testing alone to develop vehicles reliable enough to navigate urban and rural roadways safely 100% of the time would take decades. In order for development to occur in a realistic timeframe, training algorithms are needed.

Validating radar-based autonomous driving algorithms is a crucial task. The sensors capture information about road and traffic conditions and feed that information to processors and algorithms that enable it to make decisions about how the vehicle should respond to any given situation. Without proper training, autonomous vehicles could make decisions that undermine driver, passenger or pedestrian safety.

Just as people become better drivers with time and experience, autonomous driving systems improve their ability to deal with real-world driving conditions with time and training. And achieving Level 5 autonomy will require complex systems that exceed the abilities of the best human drivers.

Premature road testing of unproven ADAS and autonomous driving systems also creates risks. OEMs need the ability to emulate real-world scenarios that enable validation of actual sensors, electronic control unit code, artificial intelligence, and more.

Current lab-based simulation solutions do not provide a true approximation of real-world driving scenarios. They have a limited field of view and cannot resolve objects at distances of less than 4m. Some of these systems use multiple radar target simulators, each presenting point targets to radar sensors and emulating horizontal and vertical position by mechanically moving antennas around. This mechanical automation slows overall test time. Other solutions create a wall of antennas with only a few target simulators, enabling an object to appear anywhere in the scene, but not concurrently. In a static or quasi-static environment, this approach enables testing with a handful of targets moving laterally at speeds that are limited by the speed of robotic arms.

Current simulators can emulate a maximum of just 32 objects – including vehicles, infrastructure, pedestrians, obstacles, and other objects. This is far fewer objects than a vehicle traveling on the road may encounter at any given time. Testing radar sensors against a limited number of objects delivers an incomplete view of driving scenarios and masks the complexity of the real world.

To advance autonomous driving technology to Level 4 and Level 5 autonomy, automotive OEMs need solutions capable of rendering more objects faster and at closer distances. To help bridge these gaps, Keysight developed a proprietary scalable emulation screen that combines hundreds of miniature target radar simulators and can emulate up to 512 objects at distances as close as 1.5m. The result is a deterministic real-world environment for lab testing complex scenes that previously could only be tested on the road.

Share. Twitter LinkedIn Facebook Email
Previous ArticleNine projects exploring safety in the mobility ecosystem to be led by Toyota’s CSRC
Next Article Ford adds new VI-grade DiL to China R&D center
Thomas Goetzl, vice president of automotive and energy solutions, Keysight Technologies

Related Posts

ADAS & CAVs

VI-grade’s ZPS signals evolution in vehicle development

May 30, 20254 Mins Read
Data Storage

Tatra Trucks adopts Siemens Teamcenter

May 28, 20253 Mins Read
Aerodynamics

Innovation and engineering at Alpine 

May 27, 20252 Mins Read
Latest News

Red Hat In-Vehicle Operating System set for full release in Q3 2025

June 2, 2025

VI-grade’s ZPS signals evolution in vehicle development

May 30, 2025

QNX launches Hypervisor 8.0 to accelerate embedded software development

May 30, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT