Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Features

Tevva Motors develops electric range extender for trucks

John ThorntonBy John ThorntonFebruary 4, 20164 Mins Read
Share LinkedIn Twitter Facebook Email

A new electric range extender powertrain, which can be retrofitted to any 7.5-metric ton truck, is currently being put through its paces on roads across the UK

Development of a new environmentally friendly, low-emission solution for back-to-base fleets is well underway. Currently being tested on UK roads with three vehicles – one of which is in daily use with logistics operator UPS – the electric range extended drivetrain has the ability to reduce and avoid producing emissions completely thanks to Tevva’s intelligent predictive software. It can be fitted into an existing 7.5-metric ton truck, either as a retrofit package or on the production line during the build process.

Richard Lidstone-Scott, business project manager, Tevva, says, “We have completed the proof of concept and we are now in the process of re-designing the system so we can manufacture it in large volume and at a cost effective price.”

The drivetrain consists of a single 120kW electric motor, capable of producing 1800Nm from zero rpm, powered by 66kWh batteries located on the chassis. The drivetrain also has a range extender unit, which uses a small capacity diesel engine to generate additional charge while on the move.

It is controlled by Tevva’s patented Predictive Range Extender Management System, which enables the best, most efficient use of electric range extended drivetrain without input from the driver. With real-time access to NOx, air quality data and GPS navigation, the vehicle knows when to use the range extender and when to avoid use.

Development for the system began in October 2014 when initial designs took shape. An extensive amount of modeling was required to establish how much energy a typical vehicle needs for a set amount of mileage, how much range extender would be needed, and how to use that in the right place.

Not only did Tevva have to model the amount of power needed to drive a truck, to ensure it performed as well as a normal diesel, Tevva also had to model the amount of energy needed in a worst case scenario – to drive the truck with a flat battery. This gave the starting point for specifying the traction motor, internal combustion engine and generator.

Tevva then developed proprietary algorithms that model the energy usage of the truck on a defined route, which calculates the optimum time to run the Range Extender, if necessary.

“We also put the range extender diesel engine on the dyno at Revolve Technologies in Essex, UK – which we are working with in building the components – to map out where the most efficient points to run this engine are,”says Lidstone-Scott.

“A normal Diesel engine has a power and torque curve and an engine is usually operated across the full range. We had to find out the best points to operate the engine to generate maximum efficiency for the engine and max power. This meant running unit at multiple set points to define the ideal operating points for our needs.

“This investigation gave us three operating points; one for low noise, for use at standstill and low speed, one for high efficiency, for minimum fuel used versus power output, and a final point for high power, when you have a fully laden vehicle with a flat battery and need to drive a long distance.

Real road testing was conducted at Millbrook Proving Ground in Bedford, in the UK with a focus on speed, braking, load carrying and incline performance. In one particular test for example, the vehicle was driven up the 26° hill incline at Millbrook fully laden. Vehicles have also been driven on public roads across the UK and to Rotterdam in the Netherlands.

“During the design phase, we thought it would be difficult to get everything packaged and put into place. But looking back, that wasn’t the difficult bit – the challenge was actually integrating the different technologies into one solution, ensuring that all the components interact together,” Lidstone-Scott explains.

“Also, ensuring interaction between charging the battery with the range extender and balancing the power going to the battery pack from the regenerative braking – testing and validating that from a safety point of view has been incredibly time consuming.”

This week (commencing February 3), one truck is being driven to Leyland in Lancashire. A suite of production tests are also planned once the next set of designs are finalized. Vehicles equipped with the technology should be in full scale production within the next three years.

February 3, 2016

Share. Twitter LinkedIn Facebook Email
Previous ArticleNew simulation model developed by Federal-Mogul Powertrain cuts engine valve development time
Next Article Kistler to expand product portfolio following sales increase
John Thornton

John joined UKi Media & Events in 2012 and has worked across a range of B2B titles within the company's automotive, marine and entertainment divisions. Currently editor of Automotive Testing Technology International, Crash Test Technology International and Electric & Hybrid Marine Technology International, John co-ordinates the day-the-day operations of each magazine, from commissioning and writing to editing and signing-off, as well managing web content. Aside from the magazines, John also serves as co-chairman of the annual Electric & Hybrid Marine Awards and can be found sniffing out stories throughout the halls of several of UKI's industry-leading expo events.

Related Posts

ADAS & CAVs

VI-grade’s ZPS signals evolution in vehicle development

May 30, 20254 Mins Read
Features

How modeling and simulation drive safer battery management systems in EVs 

May 2, 20255 Mins Read
Features

The ‘golden ears’ that fine-tune Nissan audio systems

May 2, 20253 Mins Read
Latest News

Red Hat In-Vehicle Operating System set for full release in Q3 2025

June 2, 2025

VI-grade’s ZPS signals evolution in vehicle development

May 30, 2025

QNX launches Hypervisor 8.0 to accelerate embedded software development

May 30, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT