Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Features

Tech insider: Mercedes-Benz EQS

Alex GrantBy Alex GrantNovember 22, 20217 Mins Read
Share LinkedIn Twitter Facebook Email
Winter testing in Scandinavia on the last legs of the project as the car reached production maturity
Winter testing in Scandinavia on the last legs of the project as the car reached production maturity

Targeting S-Class levels of luxury and refinement from a blank-sheet all-electric platform, the EQS proved to be one of the most complex projects in Merc’s history – and it will leave an important legacy

The world’s oldest car maker is currently taking its biggest step yet into electrification. Although the EQS isn’t the first electric Mercedes-Benz, the luxury saloon is its first product designed from the ground up never to use a combustion engine, and it’s primed for ongoing changes. Half of the company’s global sales will be plug-ins within a decade, and all will be dust-to-dust carbon neutral within two. 

Production of the EQS will take place alongside the new S-Class in Sindelfingen, but the two cars were developed separately and have almost nothing in common. The electric-only EVA platform incorporates a crash-proof battery compartment within a long wheelbase, and drive units either at the rear or at both axles. 

The vehicle will be debuting at the top of the line-up, and for chief engineer Dr Oliver Röcker, the EQS had to live up to the S-Class legacy, without the advantage of generations of hindsight to work from. 

“If a Mercedes-Benz carries the ‘S’ in its name, then it must be of the highest standard – it has to be perfect, so to speak,” he says. “The development methods are comparable, but with the EQS we started this from scratch – we couldn’t look at how the previous S-Class solved a problem, and how we could improve it. This was a very challenging project, and we have chosen very different solutions to the combustion S-Class because we have an electric-only platform,” explains Röcker.

These are familiar demands. Röcker joined the program around three-and-a-half years ago, having held similar roles within the development of previous versions of the S-Class and M-Class (now GLE) SUV. Demands on R&D are evolving at pace, he says. 

“Development has changed a lot during the last few years. We are becoming more and more software driven within the car itself, but more and more hardware development is also being done by simulation. Today we simulate the whole car in crash testing, aerodynamics, even ride and handling, and in hardware we just do validation. Software knowledge is becoming increasingly important in our organization.” 

Shape shifting
Recognizing that aerodynamic performance would be a vital component of its 700km-plus range target, the EQS’s cab-forward shape results from more than 1,000 calculation runs in a virtual wind tunnel, with fidelity high enough to require 700 CPUs. 

Designers and engineers then made collaborative adjustments to clay models within the wind tunnels at Sindelfingen, tightening panel gaps, adjusting the shape of the mirrors and adding arrow-shaped wheel arch spoilers to optimize airflow for efficiency, cooling and downforce. With a flat floor and retracting door handles, the drag coefficient of 0.20Cd is said to make this the most aerodynamic car in the world, and sportier trim levels have little effect on that figure. 

The lack of engine noise was a double-edged sword, removing some sounds but making others easier to hear. Flow simulations – validated by noise measurements using a microphone array and artificial human head, which can hear just like the real thing – informed the foam barrier between the battery and cabin, acoustic dividers in the tailgate and a unique trim between the A-pillar and windshield; cavities are filled with acoustic foam. Every moving part was chosen for its near-silent operation. 

In tandem, engineers at the Mercedes-Benz Drive Systems Campus in Stuttgart-Untertürkheim were working toward similar goals, focused on powertrain NVH. Recent upgrades have introduced facilities for building and intensively testing electric powertrains, including 24 test benches that can supply direct
current to drive units, or installations where the full system, including charging systems, can be examined. These are adapted to work with the aggressive torque delivery of an electric vehicle during acceleration and regenerative braking – depending on the drive mode, the motor contributes more than half of the
car’s stopping force. Even the magnets and coils within the drive motors are optimized for minimal NVH. 

More than 1,000 virtual wind tunnel runs were conducted on the EQS’s cab-forward shape to verify if a 700km-plus range would be possible
More than 1,000 virtual wind tunnel runs were conducted on the EQS’s cab-forward shape to verify if a 700km-plus range would be possible

Energy levels
There were other important analyses specific to the platform, as Röcker explains: “In an electric vehicle, we don’t just test the driving [experience]. We tested the charging intensively in different locations, with different providers, in different climate conditions – rain, snow, very cold temperatures, charging a car that was cold and had been started just a few minutes ago – to find the best strategy to precondition the car, and so on. We have to check the interaction with the charging infrastructure, even in markets that don’t have the most extreme climate conditions, but have specialties in the power network.” 

The EQS features up to 350 sensors that monitor the vehicle’s systems and its surroundings. Driver assistance and telematics features had to be validated with differing road layouts and signage. Prototypes were used to evaluate how the vehicles responded to heavy dust or snow, and to look for anomalies such as unwanted noises and reflections within the cabin that aren’t always possible to find in simulation. Engineers optimized how every kilowatt is used, regardless of climate. 

“In an electric vehicle, every piece of energy counts,” continues Röcker. “If a system is not working, or it is not needed, then it should not take energy from the battery. We tested which systems were essential, how much energy they take and how to optimize that. It was intensive work.”

Of course, the payback is an abundance of useful hindsight for future vehicle projects. The platform is variable by wheelbase, track width and battery capacity – the EQS has up to 108kWh installed. The smaller EQE saloon and two SUVs planned for the platform will build on what’s been learned at the top of the range, and could influence the MMA compact car architecture, which is due in 2025. That said, despite taking steps into a new era, some familiar processes will remain.   

“Simulation becomes even more important as the complexity rises,” says Röcker. “But at the moment, hardware testing has to take place to validate our simulations and make sure that a car that is carrying the ‘S’ in its name is ready for the customer. The combination of systems and the behaviors of materials, you can only see this in reality.”

Journey beyond
Efforts to centralize development proved timely. At Sindelfingen, the new crash laboratory includes facilities for testing electric vehicles, and battery packs were subjected to shock, penetration and overcharging tests in-house, as well as impacts to ensure safety performance exceeds regulatory requirements. 

Facilities here are augmented by the company’s Test and Technology Center, an hour away in Immendingen, which includes road layouts, signage and traffic conditions simulating environments across the world. Mercedes-Benz aims to move 90% of endurance testing here – including cold-climate tests – and the EQS was an unexpected early case study. 

“One of the major drivers [of the investment in Immendingen] was to reduce travel and reduce transportation of the cars,” explains chief engineer Dr Oliver Röcker. “It was very helpful to have all these facilities where we could intensively test the EQS, and we used them intensively during the project – also due to our traveling restrictions [because of Covid-19] over the last one-and-a-half years.”

Despite travel restrictions, progressively more mature prototypes have completed several million kilometers of on-road testing since the first chassis and powertrain mules were assembled three years ago. Röcker says most of the test locations are similar to those used for combustion engine projects. They included climate testing in Scandinavia across to the Middle East, high-speed driving at Nardò in Italy, and ride and handling validation spanning Asia and North America. Results from global teams were fed back to engineers at Stuttgart-Untertürkheim. 

Going forward, to reduce resource consumption, Mercedes-Benz plans to perform 90% of its endurance test work at the Immendingen site, and the EQS was the first project affected
Going forward, to reduce resource consumption, Mercedes-Benz plans to perform 90% of its endurance test work at the Immendingen site, and the EQS was the first project affected
Share. Twitter LinkedIn Facebook Email
Previous ArticleMatthew Hole appointed CTO at Morgan
Next Article Crucial development milestone reached for Cadillac Lyriq
Alex Grant

Alex Grant is a freelance automotive and technology journalist with over a decade of experience working for consumer, B2B and corporate clients.

Related Posts

ADAS & CAVs

VI-grade’s ZPS signals evolution in vehicle development

May 30, 20254 Mins Read
Data Storage

Tatra Trucks adopts Siemens Teamcenter

May 28, 20253 Mins Read
Aerodynamics

Innovation and engineering at Alpine 

May 27, 20252 Mins Read
Latest News

Red Hat In-Vehicle Operating System set for full release in Q3 2025

June 2, 2025

VI-grade’s ZPS signals evolution in vehicle development

May 30, 2025

QNX launches Hypervisor 8.0 to accelerate embedded software development

May 30, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT