Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Industry Opinion

Hydrogen fuel purity testing

Dr Arul Murugan, senior research scientist, NPLBy Dr Arul Murugan, senior research scientist, NPLApril 7, 20164 Mins Read
Share LinkedIn Twitter Facebook Email

The hydrogen economy is at a tipping point. For decades, the technology has been explored and developed, especially within the automotive market where many leading manufacturers have developed concept cars and technology showcasing hydrogen’s potential as a future fuel. It has now reached a point where hydrogen vehicles can be seen on the roads, with hydrogen-fueled buses being deployed in cities around the world. However, the car industry has yet to fully embrace the technology thanks to a chicken-and-egg conundrum. People are not buying hydrogen cars because the refueling infrastructure to support them is not in place, and the infrastructure is not being built because there is not enough public demand for the cars. Given hydrogen’s potential to offer a zero-emission fuel source, if the fuel is generated via renewables, there needs to be a concerted effort to break this cycle. There are projects working on this, such as the European-organized HyFive project to validate performance and capability with BMW, Daimler, Honda, Hyundai and Toyota. However, there is a more fundamental, industry-wide issue that needs to be confronted if hydrogen refueling infrastructure is to be successfully implemented.

Impurities in fuel can degrade the engines that use it. This is no different for hydrogen cars. Hydrogen fuel cells can be damaged significantly by impurities. This results in these cars failing after a relatively short time, far sooner than a normal, fossil-fueled car. To counter this, guidelines for acceptable hydrogen purity have been laid out in International Standard ISO 14687, which outlines the maximum allowable impurity levels. EU directive 2014/94/EU also states that all refueling stations must comply with these thresholds.

One could therefore think that the job is done. We know the limits by which fuel impurities should be kept at, so manufacturers and consumers can now have confidence that the fuel going into cars will be of sufficient quality. Unfortunately, this is only half the job. Knowing the levels to stick to is one thing, but how do you prove that the hydrogen purity complies with the standard? What measurements do you need to carry out and how? And how can we be sure that all hydrogen purity laboratories are providing results that are truly stable, comparable and accurate? This is where the hydrogen industry is currently faltering and is an area that the National Physical Laboratory (NPL), the UK’s National Metrology Institute, is working to bring clarity to by providing measurements that are traceable to the internationally accepted SI system of units.

What is required is an accredited method of impurity measurement at the hydrogen fuel pumps that is traceable back to the SI system of units. In particular, the challenge is to accurately measure the low level of impurities specified in the ISO standard. The oil and gas industry has this already, with the ISO 3170 and 3171 methods outlining sampling method for petroleum products. NPL is developing a suite of analytical methods for testing the purity of hydrogen fuel, using an enrichment device to concentrate the impurities to enable analysis to be performed using commercial gas chromatographs. All developed methods will be validated using primary reference gas mixtures that are directly traceable to the SI system of units, providing confidence in the measurements. Once this standard protocol is in place, NPL will be able to perform accredited hydrogen purity testing for refueling stations and also provide traceability for all hydrogen purity laboratories to ensure that impurity measurements taken from refueling stations will be of an approved standard, laying the foundations for a trusted fuel supply chain.

Overcoming this issue will give manufacturers and consumers the necessary trust that ISO 14687 is being followed and that their cars will perform as intended. It will also allow the hydrogen infrastructure to expand as developers of these technologies will know the standards and processes they will have to meet.

Hydrogen offers great advances in low-carbon transport, but it is only by solving the fundamental barriers, such as standardizing fuel purity, that we can ensure that it lives up to its potential.

April 6, 2016

Share. Twitter LinkedIn Facebook Email
Previous ArticleFord employs specially trained engine listeners in new Focus RS development
Next Article New hydraulic test center developed by Taylor Dynamometer
Dr Arul Murugan, senior research scientist, NPL

Related Posts

Active Safety

Reengineering mobility: The SDV revolution beyond CASE

June 12, 20258 Mins Read
Cybersecurity

Five approaches to vehicle testing

June 10, 20254 Mins Read
Full-vehicle Testing

Transforming automotive time-to-market – Now or never for traditional auto makers

April 10, 20257 Mins Read
Latest News

Rohde & Schwarz unveils FSWX signal analyzer with innovative multi-path architecture

June 16, 2025

GM’s Pramod Kumar named president of Open Alliance

June 16, 2025

MB Dynamics develops lightweight shaker for testing on the move

June 16, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT