Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Features

Extending electric vehicle range through a more aerodynamic design

OpinionWritersBy OpinionWritersFebruary 27, 20195 Mins Read
Share LinkedIn Twitter Facebook Email
Extending electric vehicle range through a more aerodynamic design

In a recent case study, engineers at Applus IDIADA used Siemens PLM Software’s Simcenter STAR-CCM+ package to refine the aerodynamics of a compact electric SUV, the Cronuz, which is said to have a range of 250 miles.

Applus IDIADA believes it has designed the most aerodynamic compact electric SUV yet, delivering a 0.19 drag coefficient and a driving range of 250 miles (400km).

A recent Tesla study notes that a 10% improvement in aerodynamic performance gives a 5-8% increase in range for EVs. At speeds over 130km/h (78mph), around 80% of the power is used to overcome aerodynamic losses. Clearly, better aerodynamics provide increased range. Wind resistance is the major contributor for EV performance losses, meaning aerodynamic improvement is twice as important for EVs compared to ICEs.

The most aerodynamic cars currently on the market – including the Tesla Model S, Mercedes CLA, BMW 5 Series and Audi A4 – all have Cds hovering between 0.22 and 0.24, depending on engine types and features.

Can an electric vehicle design have a Cd lower than 0.2 without sacrificing form and functionality? The answer from Applus IDIADA, is a resounding yes. Applus IDIADA recently unveiled the Cronuz project, an electric compact SUV concept with a Cd of 0.19. Designed with a battery pack of 200-liters and weighing 1,500kg, the four-seater C class SUV runs on two electric motors and is designed for a range of 250 miles.

“As far as we know, this is the first concept electric SUV on the market with a Cd below 0.2,” says Enric Aramburu, fluids engineering product manager at Applus Idiada.

The design was a result of cooperation between Applus IDIADA’s designers and aerodynamicists. The designers produced an initial surface attuned to EV design sensibilities, an aesthetically pleasing style, a minimalist aerodynamic design and a streamlined SUV type body.

The aerodynamicists then used a virtual wind tunnel with Simcenter STAR-CCM+, a computational fluid dynamics (CFD) tool part of the Simcenter portfolio from Siemens PLM Software, for analysis of the vehicle aerodynamic performance using numerical simulation.

Applus IDIADA simulated more than 600 design proposals over six months, incorporating drag-reducing concepts into each design. With Simcenter STAR-CCM+ simulations, the final optimized design delivered a drag coefficient of 0.17 in free air without attempting to model the wind tunnel and in steady-state conditions. The final assessment of the wind tunnel testing provided a Cd of 0.19, confirming the simulate-innovate-test approach and the Cronuz’s place as the most aerodynamic concept EV compact SUV.

Aramburu adds, “We knew from Simcenter STAR-CCM+ that we could achieve a record drag value even before building a prototype.”

Two innovative features on the Cronuz are key in driving down the drag – active systems and an optimized wheelhouse/underbody design.

Active aerodynamic systems refer to parts of a car moving in-operation to positively affect the airflow around the car. These systems are the next breakthrough in achieving fuel efficiency, reduced drag and increased downforce in the automotive industry.

They ensure optimum aerodynamics for every driving situation, be it low drag in economy mode or high downforce in sport mode, while maintaining the design sensibilities and styling requirements from the designers.

Cronuz features active systems for the front fairing and an active rocker, which are hidden at low speed and while parking. At high speeds or on-demand, the active systems are deployed, changing the airflow around the car (and even the car’s shape) to stay attached from front to rear while minimizing turbulence around the wheel well, one of the key drag contributors.

Forty percent of aerodynamic losses come from wheelhouse and underbody areas, offering significant room for optimization. An optimized rim design, low undercarriage (deployed after 80mph/ 128km/h) and an almost completely closed wheelhouse from underneath minimize wheelhouse turbulence and ensure attached flow from front to rear – a major driver for drag reduction.

Steady-state simulations in Simcenter STAR-CCM+ showed the active systems reducing drag by 20 counts (one drag count equals a Cd of 0.001). Even accounting for wind tunnel mounts and unsteadiness, which were not included in the simulations, this confirmed the huge reduction in drag from active systems. Wind tunnel tests eventually showed a 14-count reduction.

These innovations were possible by iterating various designs for the active systems, rims and underbody wheelhouse covers in Simcenter STAR-CCM+ to find the best performing combination. These design improvements reduced drag by 55 drag counts prior to building the only prototype.

“I can’t imagine conducting a project like this without Simcenter STAR-CCM+,” says Aramburu. “By building a digital twin, we were able to try out various design possibilities with simulation early in the process. Simulation is the key to design innovation.”

The aerodynamic innovations in the Cronuz stand to help both major original equipment manufacturers (OEMs) and EV startups in reducing drag and increasing range. Such shape-shifting cars with active systems, which have become prominent in the last decade, seem to be the future of automotive aerodynamics.

Applus Idiada's Cronuz

 

Share. Twitter LinkedIn Facebook Email
Previous ArticleSavari and Rohde & Schwarz to collaborate on C-V2X testing
Next Article Up-to-date with the latest R&D projects?
OpinionWriters

Independently submitted opinions from our readers. Share your opinions by sending up to 800 words to rachel.evans@ukimediaevents.com. Only original contributions will be considered and the editor's decision is final.

Related Posts

ADAS & CAVs

VI-grade’s ZPS signals evolution in vehicle development

May 30, 20254 Mins Read
Features

How modeling and simulation drive safer battery management systems in EVs 

May 2, 20255 Mins Read
Features

The ‘golden ears’ that fine-tune Nissan audio systems

May 2, 20253 Mins Read
Latest News

Red Hat In-Vehicle Operating System set for full release in Q3 2025

June 2, 2025

VI-grade’s ZPS signals evolution in vehicle development

May 30, 2025

QNX launches Hypervisor 8.0 to accelerate embedded software development

May 30, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT