Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
ADAS & CAVs

Argo AI releases guidelines for autonomous vehicle interactions with cyclists

Lawrence ButcherBy Lawrence ButcherDecember 8, 20216 Mins Read
Share LinkedIn Twitter Facebook Email
Photo by Jared Wickerham/For AI Argo

Autonomous vehicle technology solutions provider Argo AI has released the technical guidelines it applies to ensure safe interactions between autonomous vehicles and cyclists, and encourages others to do the same. The guidelines, created in collaboration with the League of American Bicyclists, a US national cycling advocacy group, are intended as a foundation for further innovation and improvement among companies developing self-driving technology.

“Argo AI is focused on developing self-driving technology that makes cities safer for everyone — in particular cyclists and other vulnerable road users,” said Dr Peter Rander, president and co-founder of Argo AI. “These technical guidelines deliver on our commitment to developing a self-driving system that is trusted by cyclists and enhances the safety of the communities in which we operate.”

According to NHTSA, cyclist traffic fatalities in the USA rose 5% in 2020 compared with 2019. Globally, the World Health Organization estimates that 41,000 cyclists die in road traffic-related incidents every year.

“Argo AI and the League of American Bicyclists share a common goal to improve the safety of streets for all road users,” said Ken McLeod, policy director at the League. “We appreciate Argo’s proactive approach to researching, developing and testing for the safety of people outside of vehicles. Roads have gotten significantly less safe for people outside of vehicles in the last decade, and by addressing interactions with bicyclists now, Argo is demonstrating a commitment to the role of automated technology in reversing that deadly trend.”

To understand concerns among cyclists when sharing the road, Argo AI says it set out to collaborate and engage with the cycling community. The League of American Bicyclists provided consultation to inform Argo AI of common cyclist behaviors and typical interactions with vehicles. Together they outlined six technical guidelines for the manner in which a self-driving system should accurately detect cyclists, predict cyclist behavior, and drive in a consistent way to effectively and safely share the road. The guidelines are as follows:

1: Cyclists should be a distinct object class
Due to the unique behavior of cyclists that distinguish them from scooter users or pedestrians, a self-driving system (or ‘SDS’) should designate cyclists as a core object representation within its perception system in order to detect cyclists accurately. By treating cyclists as a distinct class and labeling a diverse set of bicycle imagery, a self-driving system detects cyclists in a variety of positions and orientations, from a variety of viewpoints, and at a variety of speeds. It should also account for the different shapes and sizes of bikes—like recumbent bikes, bicycles with trailers, electric bikes, and unicycles—as well as different types of riders.

2: Typical cyclist behavior should be expected
An advanced understanding of potential cyclist patterns of movement is necessary to best predict their intentions and prepare the self-driving vehicle’s actions. A cyclist may lane split, yield at stop signs, walk a bicycle, or make quick, deliberate lateral movements to avoid obstacles on the road, like the sudden swinging open of a car door. An SDS should utilize specialized, cyclist-specific motion forecasting models that account for a variety of cyclist behaviors, so when the self-driving vehicle encounters a cyclist, it generates multiple possible trajectories capturing the potential options of a cyclist’s path, thus enabling the SDS to better predict and respond to the cyclist’s actions.

3: Cycling infrastructure and local laws should be mapped
A self-driving system should use high-definition 3D maps that incorporate details about cycling infrastructure, like where dedicated bike lanes are located, and include all local and state cycling laws to ensure its self-driving system is compliant. Accounting for bike infrastructure enables the SDS to anticipate cyclists and to maintain a safe distance between the self-driving vehicle and the bike lane. When driving alongside a bike lane, the SDS will consider the higher potential for encountering a cyclist and common cyclist behavior, like merging into traffic to avoid parked cars blocking a bike lane, or treating a red light as a stop sign, which is known as an “Idaho Stop” and is legal in some states.

4: An SDS should drive in a consistent and understandable way
Developers of self-driving technology should strive for the technology to operate in a naturalistic way so that the intentions of autonomous vehicles are clearly understood by other road users. In the presence of nearby cyclists or when passing or driving behind cyclists, an SDS should target conservative and appropriate speeds in accordance with local speed limits, and margins that are equal to or greater than local laws, and only pass a cyclist when it can maintain those margins and speeds for the entire maneuver.

In situations where a cyclist encroaches on a self-driving vehicle — for example when lane splitting between cars during stopped traffic — the vehicle should minimize the use of actions which further reduce the margin or risk unsettling the cyclist’s expectations. The SDS should also maintain adequate following distances so that if a cyclist happens to fall, the self-driving vehicle has sufficient opportunity to maneuver or brake. Self-driving vehicles should provide clear indications of intentions, including using turn signals and adjusting vehicle position in lane when they are preparing to pass, merge lanes, or turn.

5: Prepare for uncertain situations and proactively slow down
The reality of the road is that sometimes other road users act unpredictably. A self-driving system should account for uncertainty in cyclists’ intent, direction and speed—for instance reducing vehicle speed when a cyclist is traveling in the opposite direction of the vehicle in the same lane. When there is uncertainty, the self-driving system should lower the vehicle’s speed and, when possible, increase the margin of distance to create more time and space between the self-driving vehicle and the cyclist and drive in a naturalistic way.

6: Cyclist scenarios should be tested continuously
The key to developing safe and robust autonomy software is thorough testing. Developers of self-driving technology should be committed to continuous virtual and physical testing of its self-driving system with a specific focus on cyclist safety in all phases of development.

Argo states that the development and publication of these guidelines are intended for adoption as industry best practices promoting special consideration of cyclist behavior and interactions. Argo and the League are encouraging the guidelines to be used by all self-driving technology developers to build trust in self-driving technology as testing and deployments expand and to ensure self-driving systems share the road safely and effectively with cyclists.

“The creation of these guidelines is part of Argo’s dedication to building trust with community members and developing a self-driving system that provides a level of comfort to cyclists, by behaving consistently and safely,” concluded Dr Rander. “We encourage other autonomous vehicle developers to adopt them as well to further build trust among vulnerable road users.”

Share. Twitter LinkedIn Facebook Email
Previous ArticleBosch brings all software development and sales under one roof
Next Article dSpace and Foretellix collaborate on ADAS and AV testing systems
Lawrence Butcher

Lawrence has been covering engineering subjects – with a focus on motorsport technology – since 2007 and has edited and contributed to a variety of international titles. Currently, he oversees Automotive Powertrain Technology International and Professional Motorsport World magazines as editor.

Related Posts

ADAS & CAVs

VI-grade’s ZPS signals evolution in vehicle development

May 30, 20254 Mins Read
Proving Grounds

RISE Proving Ground AstaZero unveils 6G, Edge-computing facility for vehicle communication testing

May 28, 20253 Mins Read
Data Storage

Tatra Trucks adopts Siemens Teamcenter

May 28, 20253 Mins Read
Latest News

Red Hat In-Vehicle Operating System set for full release in Q3 2025

June 2, 2025

VI-grade’s ZPS signals evolution in vehicle development

May 30, 2025

QNX launches Hypervisor 8.0 to accelerate embedded software development

May 30, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT