Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Industry Opinion

The road to driverless – fully autonomous vehicles by 2021?

Chris Hayhurst, European consulting manager, MathWorksBy Chris Hayhurst, European consulting manager, MathWorksAugust 16, 20195 Mins Read
Share LinkedIn Twitter Facebook Email
Test World appoints key staff in bid to grow business

Chris Hayhurst, European consulting manager at MathWorks, examines whether former UK transport secretary Chris Grayling’s estimate that driverless cars will be on public roads within the next three years is realistic

Driverless technology already exists on UK roads, but it’s important to bear in mind that autonomy exists on a spectrum. Level 1 refers to automation of single functions, and Level 5 represents vehicles that can navigate any road in complete independence. Currently the majority are categorized into Stage 1 or 2 with a handful at Level 3, as achieving Level 4 and 5 can be extremely challenging. From consumer perceptions, to insurance, to the strict regulatory environment, as well as the technology itself, there is plenty to overcome before we see widespread adoption of fully driverless cars.

Pedestrians ahead

We are seeing the development of driverless cars progressing much more slowly than for other forms of driverless transportation, such as dump trucks being trialled at UK roadworks, which are already at the equivalent of Level 4. This is due to humans having to be factored into the decision process of driverless cars to ensure their safe operation. The impact of human interaction with driverless vehicles is complicated by our unpredictable nature – our actions and movements are difficult to track, meaning the number of different scenarios within which to test driverless technology is much greater to guarantee safety.

We are also seeing better progress made in driverless vehicles required to perform repetitive tasks because these are far easier to automate, such as in agriculture with driverless tractors and mining with vehicles that haul materials from one area of the mine to another.

Predicting human interaction

Some have suggested humans will purposefully test the limits of driverless vehicles, for example by not waiting for the green man and instead deliberately obstructing cars so they stop immediately – with potentially dangerous consequences. It is crucial driverless car developers take such predictions into account to ensure the technology remains safe and continues to function correctly and consistently, no matter what human interaction it encounters.

Driverless vehicles need to be able to work in all types of weather, from rain and storm, to snow and sleet. Heavy weather makes it particularly hard for driverless cars to operate, primarily due to the disruption to the sensor technology used to identify signs and road markings. In addition, it is harder for driverless cars to operate safely in countries where they have poorly regulated road systems or limited road infrastructure because the driving parameters are so much more complex and unpredictable for the technology to deal with.

The role of AI

And what about the role of AI in the development of autonomous systems and vehicles? In terms of machine learning, this technology can be used for teaching a system to recognize specific features in images or data. However, the ‘black box’ issue (lack of transparency) can be a problem if the system is safety critical. Due to the automotive industry being highly regulated, manufacturers need to ensure their systems can be properly testable and are fully certifiable, which can only be achieved if the AI algorithms in use can be understood by a person.

Testing is vital when designing autonomous systems such as driverless cars. But it’s just not possible to do so through real-world trials alone, as there are simply too many possible scenarios, variables and hazards to examine. Therefore, having the right modeling technology in place is key.

Capitalizing on development tools

There is an extensive and flexible set on offer to engineers right now that cover the entire development lifecycle of autonomous systems, from designing and choosing the right sensors, to those that develop and deploy algorithms for vehicle perception. This includes verification and validation tools, deployment tools and simulation and controls system design tools such as Simulink.

As real-world testing can be so expensive and resource heavy, using such simulation software – which allows users to recreate a variety of real-world situations driverless vehicles may encounter virtually – means developers can make extensive savings in both time and money.

Further to simulating different road surfaces and weather patterns, simulation also makes it possible to test how a varying number of sensors, radars and cameras affect the performance of the vehicle in a simulated environment before creating and testing it on the road. Sensors in particular can be costly – the more sensors on a car, the more expensive it becomes, so driverless vehicle developers can use this technology to work out this particular trade-off.

Looking to the future

Looking ahead, we are likely to see two main forms of autonomous features: safety features as standard, as well as additional convenience features such as self-parking that will come at a premium.

As previously mentioned, verification and validation tools, as well as AI, will remain invaluable in the development of autonomous systems in making sure the systems are certifiable. But human beings need to have visibility and understanding of the decisions AI systems are taking in order for independent third parties to certify them as safe for use around human beings.

It’s highly unlikely we will see fully driverless cars on the roads by 2021 due to the amount of testing there is still to be done. What is definite is that the key role technology is playing in the progress toward fully autonomous vehicles going mainstream.

Share. Twitter LinkedIn Facebook Email
Previous ArticleUp to date with the latest R&D projects?
Next Article Hydrogen Mobility Europe reaches key milestone as hydrogen-powered vehicles travel over eight million kilometers
Chris Hayhurst, European consulting manager, MathWorks

Related Posts

Full-vehicle Testing

Transforming automotive time-to-market – Now or never for traditional auto makers

April 10, 20257 Mins Read
Industry Opinion

Navigating the hype surrounding SDVs

April 2, 20254 Mins Read
Industry Opinion

Why OEMs are struggling to modernize SDVs

April 1, 20256 Mins Read
Latest News

Final handling tests for Alpine A390 sport fastback

April 28, 2025

Mustang installs R&D heavy-duty test stand at Texas A&M

April 28, 2025

Thales to help Michelin protect and expand its software business

April 28, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT