Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Industry Opinion

Generative design for autonomous vehicle electrical systems

Doug Burcicki, director Automotive, SiemensBy Doug Burcicki, director Automotive, SiemensMarch 19, 20194 Mins Read
Share LinkedIn Twitter Facebook Email

Autonomous vehicles (AV) will require an extensive system of advanced sensors, onboard computers, high-speed and high-bandwidth data networks, and wiring to connect everything. This complex network of cameras, radar, lidar sensors and electronic control units (ECU) will be responsible for detecting and interpreting dynamic environmental conditions to inform real-time driving decisions. This means gathering, processing and distributing gigabits of data every second to enable the algorithms and ECUs to respond to a rapidly changing driving environment.

The complexity and criticality of the electrical and electronic systems required for autonomous driving will dramatically increase the challenge of vehicle design and engineering. This is due to the extensive testing and validation needed to ensure the safety of these systems. Most estimates predict that autonomous vehicles will require billions of miles-worth of testing to ensure their safety. To remain competitive, manufacturers will need to incorporate the lessons learned through simulated and real-world testing into their autonomous vehicle designs.

The technological demands of fully autonomous vehicles are enormously challenging for engineers. Advanced sensor technology, high-speed and high-bandwidth data networks, and cutting-edge artificial intelligence are all crucial to the functional and commercial success of autonomous vehicles. The real challenge, however, begins when these advanced technologies are integrated into a single system that must perceive, communicate, and decide on a course of action.

A car with Level 2 autonomy, for example, may feature active cruise control, a lane departure warning system, lane-keep assist and parking assistance. This car also requires 17 sensors to enable its driver assistance systems. These sensors consist of ultrasonic, long-range radar, short-range radar, and surround cameras to monitor the vehicle’s environment. Furthermore, the computations performed by this car’s automated systems are relatively primitive. The lane-keep assist system, for instance, is only tasked with monitoring the vehicle’s position relative to the lines of the road. Should the driver begin to stray, the system will notify the driver or take corrective action, but ultimate responsibility for control of the vehicle lies with the driver.

A Level 5 autonomous vehicle will have complete responsibility for control over the driving task, requiring no human input. As a result, a Level 5 car will have more than 30 additional sensors of a much wider variety, to cover the huge number of tasks involved. On top of the ultrasonic, surround camera, and long- and short-range radar sensors of a Level 2 car, Level 5 will require long-range and stereo cameras, lidar, and dead reckoning sensors. The increase in sensors will increase the amount of wiring needed in the harness and the necessary computational resources to handle the gigabits of data being produced by the sensors.

During design, engineers will perform architecture and trade-off analyses to investigate architectural proposals, such as a centralized versus domain versus distributed architecture. For an autonomous vehicle platform, these analyses will need to account for hundreds of components and millions of signals while optimizing function locations, network latency, error rates, and more.

Despite these challenges, AV is a burgeoning market. At least 144 companies have announced AV programs, and annual spending on semiconductors for ADAS applications is projected to grow year-on-year. Some of these are major automotive manufacturers seeking to stay ahead of the coming industry disruption, but most are startups or companies from other industries seeking to enter a traditionally impenetrable market. These companies lack industry-specific experience and the engineering resources necessary to plow their way through the complexities of AV design. Even the major automotive OEMs will face problems that their legacy design flows are ill-equipped to handle.

This will be true especially as companies move their AV projects from research, development, and one-off prototyping, into full-scale production. Autonomous systems will need to be optimized for cost, weight, and power consumption, while adhering to the most stringent safety requirements the automotive industry has ever faced. To compete, these companies will need a new design methodology that enables young engineers to design accurate and optimized systems, which can only be done by capturing the experience and knowledge of veteran engineers. They will need generative design.

Share. Twitter LinkedIn Facebook Email
Previous ArticleSupercomputers and 3D printing key to all-new Mustang Shelby GT500 performance
Next Article Name the test location
Doug Burcicki, director Automotive, Siemens

Related Posts

Full-vehicle Testing

Transforming automotive time-to-market – Now or never for traditional auto makers

April 10, 20257 Mins Read
Industry Opinion

Navigating the hype surrounding SDVs

April 2, 20254 Mins Read
Industry Opinion

Why OEMs are struggling to modernize SDVs

April 1, 20256 Mins Read
Latest News

Red Hat In-Vehicle Operating System set for full release in Q3 2025

June 2, 2025

VI-grade’s ZPS signals evolution in vehicle development

May 30, 2025

QNX launches Hypervisor 8.0 to accelerate embedded software development

May 30, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT