Close Menu
Automotive Testing Technology International
  • News
    • A-H
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
    • I-Z
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    • March 2025
    • November 2024
    • September 2024
    • June 2024
    • Crash Test Technology – 2023
    • Automotive Testing Technology
    • Subscribe to Automotive Testing
    • Crash Test Technology
    • Subscribe to Crash Test Technology
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn Facebook X (Twitter)
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn
Subscribe
Automotive Testing Technology International
  • News
      • ADAS & CAVs
      • Aerodynamics
      • Appointments, Partnerships, Investments & Acquisitions
      • Automotive Testing Expo
      • Batteries & Powertrain Testing
      • Component Testing
      • Safety and crash testing
      • Dynamometers
      • EMC & Electronics Testing
      • Emissions & Fuel Consumption
      • Facilities
      • Full-vehicle Testing
      • Interiors & Infotainment Testing
      • Measurement Tools, Test Systems & Equipment
      • Motorsport
      • NVH & Acoustics
      • Proving Grounds
      • R&D
      • Sensors & Transducers
      • CAE, Simulation & Modeling
      • Software Engineering & SDVs
      • Tire Testing
  • Features
  • Online Magazines
    1. March 2025
    2. November 2024
    3. Crash Test Technology – 2024
    4. September 2024
    5. June 2024
    6. Automotive Testing Technology
    7. Subscribe to Automotive Testing
    8. Crash Test Technology
    9. Subscribe to Crash Test Technology
    Featured
    April 9, 2025

    In this Issue – March 2025

    Automotive Testing Technology By Rachel Evans
    Recent

    In this Issue – March 2025

    April 9, 2025

    In this Issue – November 2024

    November 26, 2024

    In this Issue – 2024

    September 30, 2024
  • Opinion
  • Awards
    • About
    • What’s new and key dates
    • Eligibility and nomination
    • Get in touch
    • Judges
    • Winner interviews
    • ATTI Awards Forum
  • Videos
  • Supplier Spotlight
  • Proving Grounds
  • Events
LinkedIn
Subscribe
Automotive Testing Technology International
Features

Keep it on the hush

Rachel EvansBy Rachel EvansJanuary 19, 20184 Mins Read
Share LinkedIn Twitter Facebook Email
Volvo uses LMS Test.Lab software to better understand the source of noise emissions

As with many other environmental regulations, limits on pass-by noise emissions have become a key factor in any vehicle development cycle. Standards and legal frameworks are constantly evolving, requiring engineers to adapt quickly to new challenges. To make sure all Volvo cars can easily meet future pass-by noise regulations, the Volvo Car Group recently teamed up with Siemens PLM Software. The acoustics engineers chose LMS Test.Lab software, part of the Siemens Simcenter solutions portfolio, to support their design processes.

High customer expectations and a stringent legal framework have made noise emission a defining competitive asset for any type of new road vehicle on the market. Pass-by noise legislation provides car builders with a framework and maximum noise emissions limits, requiring them to prove that their cars, trucks, buses and motorcycles comply with noise regulations.

Investing in acoustic performance
ISO 362 describes how pass-by noise tests should be performed based on environmental and operational conditions, what instruments should be used and the minimal requirements for measurement quality. While the standard defines testing requirements, it does not impose maximum noise emission levels. Governmental bodies, such as the European Council, use legislation to define regional limits. Both increasing traffic and continuous developments in noise emissions have led to several revisions to the ISO 362 standard.

Vehicle speeds in urban areas are generally lower, around 31mph (50km/h), with accelerations rarely exceeding 1m/s. ISO 362:2007 addresses these issues by introducing a combination of WOT and constant speed tests to calculate the overall pass-by noise level.

Volvo Cars invests extensively in analyzing the acoustic performance of every car component, a process that puts high demands on the amount and quality of test data available to engineers. With the current EU pass-by noise regulations being revised and bearing in mind the prospect of emission levels being reduced by at least 3-4 A-weighted decibels, Volvo Cars decided to try the pass-by noise testing module included with LMS Test.Lab in a pilot project to fine-tune its existing testing methods.

A major change in the new approach is the testing location. Although the ISO 362 standard still requires testing on an outdoor test track, new standards are under discussion that would allow certification testing to be performed indoors in a chassis dynamometer (dyno) facility. The advantage of indoor tests is that they are not dependent on weather conditions so productivity can increase and time to market can be reduced.

Separating out the noise
The number of microphones used is impressive: 20 array microphones are installed on each side of the car, while 35 separate microphones (covering seven sources) record powertrain noise levels. The exhaust is represented by three sources, which are registered by 13 microphones, and eight more microphones cover the right-hand side tires. In total, 75 microphones, two speed channels (vehicle and engine), one kick-down channel (triggering the start of tests) and one engine reference accelerometer all feed into the testing system.

The overall pass-by noise level produced by a car is the sum of the noise contribution from different sound sources, mainly the powertrain and tires. As indoor measurements are usually performed with slick tires, indoor pass-by levels mainly consist of powertrain noise. Volvo Cars measures tire noise on an outdoor track by equipping a vehicle with regular tires and having it coast with its engine shut off. This coast-down measurement is then repeated indoors with slicks to improve the overall tire model. The indoor noise testing allows researchers to separate powertrain and tire noise and conduct an in-depth analysis so they can rank individual components.

Gaining insight
For Volvo Cars, initial conclusions from this new measurement method have produced interesting insights into the noise contribution of separate components under various testing conditions. The imminent introduction of constant speed testing, as prescribed in ISO 362:2007, makes these findings particularly relevant.

Tests were conducted using a 2.5-liter, five-cylinder diesel engine with both slick tires and regular tires. Using slick tires, the dominant sources in order of importance were the front tires, powertrain, rear tires, tailpipe and muffler.

In higher gears and at a constant speed, the rear tires proved more important than the powertrain. The tailpipe contribution remained below that of the powertrain in all tests.

Saving time
As a test case, the contribution from all six powertrain sources was reduced by 6dB(A) between 300 and 3,000Hz. Source editing revealed that this led to an overall noise reduction of only about 1.25dB(A). The experiment illustrates the difficulty in achieving even the slightest change in the overall pass-by noise level.

LMS Test.Lab in-room pass-by noise testing gives immediate feedback on the magnitude of modifications when adjusting individual component designs.

Share. Twitter LinkedIn Facebook Email
Previous ArticleJLR to open software engineering center in Ireland
Next Article Groupe Renault reveals Symbioz prototype
Rachel Evans

Rachel's career in journalism has seen her write for various titles at UKi Media & Events within automotive, tire and marine. Currently editor of ATTI, her favourite aspect of the job is interviewing industry experts, including researchers, scientists, engineers and technicians, and learning more about the groundbreaking technologies and innovations that are shaping the future of transportation.

Related Posts

Vehicle Development

Tier IV launches autonomous test vehicle development kit

June 13, 20252 Mins Read
Features

Porsche embraces AI for innovative data analysis in vehicle development

June 12, 20253 Mins Read
Features

INTERVIEW: Matt Wilson, team principal, Ford M-Sport

June 10, 20257 Mins Read
Latest News

Rohde & Schwarz unveils FSWX signal analyzer with innovative multi-path architecture

June 16, 2025

GM’s Pramod Kumar named president of Open Alliance

June 16, 2025

MB Dynamics develops lightweight shaker for testing on the move

June 16, 2025
Free Weekly E-Newsletter

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TITLES
  • Automotive Interiors
  • Automotive Powertrain
  • ADAS & Autonomous Vehicle
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT