Supplier Spotlight

Show Reviews

Automotive Testing Expo Europe 2017 Show Review

Click here to read

 

Automotive Testing Expo Europe 2016 Show Review

Click here to read

 

Automotive Testing Expo Europe 2015 Show Review

Click here to read

 

Automotive Testing Expo North America 2014 Show Review

Click here to read

 

Automotive Testing Expo India 2014 Show Review

Click here to read

 

Latest Video


JLR heads to LA with I-Pace

LV

Engineer Simon Patel takes potential I-Pace customer Ann Voyer on a long-distance real world road trip from Sunset Boulevard, Los Angeles to Morro Bay, San Luis Obispo to test the vehicle's range and durability

Click here to watch the video


Waymo unveils self-driving cars

LV

Waymo, which started as the Google self-driving car project in 2009, is ready for the next phase. Fully self-driving vehicles are currently being tested on public roads, without anyone in the driver’s seat.

Click here to watch the video


As vehicle developers and suppliers continue to advance their software programs, ATTI wants to know, has simulation software established itself as the single most vital piece of equipment during a development program?

Articles

« back to listing

Cummins Turbo Technologies turbocharger containment and wheel burst testing

In a recent study, the company used FEA to simulate this complex phenomena, in order to shorten the design cycle and reduce physical test times

 

Mike Eastwood, group leader for structural analysis at Cummins Turbo Technologies, explains the process that the team took and how it overcame challenges.

Why did you conduct this research?

There is a safety requirement for turbochargers, in that if a wheel burst occurs, all fragments of the wheel and housing must be contained within the housing without puncture of the outer surface – this is called ‘containment’. Cummins Turbo Technologies has used Ansys analysis products for almost 25 years. As part of this ongoing relationship, it was suggested that we may be able to use the Autodyn explicit package, as supplied by Ansys, to perform turbine end burst simulation, to allow optimization of design to achieve containment.

As part of the Cummins Analysis Led Design (ALD) initiative, we thought there might be an opportunity to reduce the concept design cycle time by optimizing the turbine housing design using analysis to enable containment. The second reason was to optimize the weakening slot to cause wheel burst at the required speed, again cutting down on the amount of testing required. Replacing testing with analysis helps cut down costs.

What was your role on the project and how long did it take?
My role was supervisor to the paper’s author (Lin Wang). I have had some experience in the area of impact analysis using LS-Dyna for turbine housing containment prediction around 17 years ago. Wang took advice from Alex Pett at Ansys on explicit analysis. It took a few months to develop and correlate the turbine housing containment technique and a further few months to develop and correlate the wheel burst with weakening slot technique.

What were the project’s goals?
The aim of the project was to use analysis to simulate the turbine end burst test in order to cut down on the amount of physical testing required. There would be two savings at the turbine end. The first saving was using analysis to help design a turbine housing that could pass the burst test first time by absorbing enough kinetic energy and not allowing turbine wheel fragments to escape.

This would prevent a ‘design – test – design’ trial-and-error approach and its associated cost implications. The second saving was to create the dimensions of the required weakening slot to allow the turbine wheel to burst at the required speed on test, again preventing a trial-and-error approach.

What did you do, and what challenges did you encounter?
The turbine housing containment model was built gradually, considering geometry; meshing; material properties; material plasticity and fracture models; wheel speed; and thermal and structural boundary conditions. This was carried out until we were satisfied in a number of cases that simulating was correlating well to real burst test data. We also showed the method and results in a number of Cummins functional excellence forums along the way to gain feedback.

For a highly non-linear problem, a large number of iterations have to be carried out before finding the equilibrium, thus the global stiffness matrix has to be assembled and inverted many times during the analysis. Time steps during solution also have to be very small, therefore, the computation is extremely expensive and memory requirements are also very high. It is difficult to predict how long it will take to solve the problem or even if convergence can be achieved.

What was the end result?
We have achieved good correlation to test over a number of simulations, allowing us to standardize analysis and test techniques. The next step for the company is to look at compressor end containment and other areas of the turbocharger where explicit analysis may be helpful, such as parts of the manufacturing process requiring non-linear explicit analysis for simulation.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 









































July 19, 2016

 

Read Latest Issue
Read Latest Issue
RECEIVE THE
LATEST NEWS


Your email address:



Web Exclusives

Safer analysis of onboard chargers

How Keysight's compact, two-quadrant, regenerative power converter test solution with integrated safety features accelerates test time, and protects both users and devices under test
Click here to read more



SEAT uses HBM autonomous DAQ system

SEAT and Polytechnic University of Catalonia (BarcelonaTech) have jointly developed a unique data acquisition enabling more precise control over instrumented parts and the entire data acquisition process  
Click here to read more



Modern calculation management

The engineering department at Hitachi Construction Truck Manufacturing is taking steps to improve its rigid-frame hauling truck design through improving its analysis tools
Click here to read more



Traveling in a Volkswagen that is still to be developed

Volkswagen Group’s IT Virtual Engineering Lab has developed a virtual concept car using digital future technology
Click here to read more



The importance of software engineering

Tier 1 supplier GKN’s software and electronics manager, Michael Schomisch, discusses how software development is becoming increasingly important in vehicle testing
Click here to read more




Supplier Spotlight

Supplier SpotlightClick here for listings and information on leading suppliers covering all aspects of the automotive testing industry. Want to see your company included? Contact jason.sullivan@ukimediaevents.com for more details.

Submit your industry opinion

Industry BlogDo you have an opinion you'd like to share with the automotive testing community? Good or bad, we'd like to hear your views and opinions on the leading issues shaping the industry. Share your comments by sending up to 500 words to john.thornton@ukimediaevents.com

Advertising

Recruitment AdTo receive information on booking an advertising banner please email jason.sullivan@ukimediaevents.com